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ABSTRACT

Oscillatory reconnection is a specific type of time-dependent reconnection which involves periodic changes

in the magnetic topology of a null point. The mechanism has been reported for a variety of magnetic field

strengths and configurations, background temperatures and densities. All these studies report an oscillation

in the current density at the null point, but also report a variety of periods, amplitudes and overall behaviors.

We conduct a parametric study for equilibrium magnetic field strength and initial background temperature,

solving 2D resistive MHD equations around a magnetic X-point. We introduce a parameter space for the

ratio of internal-to-magnetic energy and find self-similar solutions for simulations where this ratio is below 0.1

(which represents a magnetically-dominated environment or, equivalently, a low-beta plasma). Self-similarity

can be seen in oscillations in the current density at the null (including amplitude and period), Ohmic heating

and the temperature generated via reconnection jets. The parameter space of energy ratios also allows us

to contextualize previous studies of the oscillatory reconnection mechanism and bring those different studies

together into a single unified understanding.

Keywords: Solar magnetic reconnection(1504) — Solar physics(1476) — Solar coronal transients(312)

— Solar coronal heating(1989) — Magnetohydrodynamics(1964)

1. INTRODUCTION

Magnetic reconnection is a fundamental plasma pro-

cess allowing stored magnetic energy to be released into

thermal and kinetic energy, as well as accelerate particles

and allow a change in magnetic connectivity (Pontin &

Priest 2022; Browning et al. 2024). Reconnection is un-

derstood to be at the heart of several fundamental pro-

cesses, including coronal mass ejections (e.g. Webb &

Howard 2012) and solar flares (e.g. Benz 2017). For ex-

ample, observations of chromospheric anemone jets have

provided evidence of reconnection events occurring at

smaller spatial scales in the chromosphere, suggesting a

potential link between the heating of the solar chromo-

sphere and corona and small-scale reconnection (Shibata

et al. 2007).

Oscillatory reconnection is a specific type of time-

dependent reconnection which involves periodic changes

in the magnetic connectivity and topology of the field.

The concept of oscillatory reconnection was first identi-

fied by Craig & McClymont (1991) during their inves-

tigation of the relaxation of a two-dimensional (2D) X-

point configuration magnetic field. One distinguishing

feature of oscillatory reconnection is its intrinsic period-

icity, which arises naturally from the relaxation process

itself rather than being externally imposed (i.e. the gen-

eration of periodic outputs even from aperiodic drivers

McLaughlin et al. 2012a).

McLaughlin et al. (2009) investigated a 2D X-point

configuration in a cold plasma simulating the resis-

tive magnetohydrodynamic (MHD) equations for a ideal

fully-ionized plasma. In this study, oscillatory reconnec-

tion was initiated by perturbing the magnetic X-point

using an external fast magnetoacoustic pulse. The re-

search identified several key properties of this mecha-

nism, including periodic changes in the orientation of

the resulting current sheet corresponding to alterations

in magnetic connectivity. Additionally, the formation

of both fast and slow oblique magnetic shocks was ob-

served as part of the oscillatory reconnection process.

Studies have also highlighted the role of oscillatory re-

connection in generating quasi-periodic waves and flows

in the solar atmosphere, providing a physical explana-

tion for high-speed, quasi-periodic, transverse outflows

and jets (McLaughlin et al. 2012b).

Investigations into the three-dimensional (3D) nature

of oscillatory reconnection have revealed that reconnec-

tion at fully 3D nulls can occur naturally in a time-

dependent and periodic fashion (Thurgood et al. 2017).

The periodicity of oscillatory reconnection has been
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found to be independent of the initial pulse in 2D X-

point simulations (Karampelas et al. 2022a). More re-

cently, Talbot et al. (2024) investigated the impact of

resistivity on oscillatory reconnection, and discovered

that the reconnection period is independent of back-

ground resistivity. Additionally, simulations of emerging

flux in a coronal hole have demonstrated the initiation

of oscillatory reconnection in a self-consistent manner,

with signatures comparable to observations of select flux

emergence events and solar and stellar flares (Murray

et al. 2008). Moreover, oscillatory reconnection has been

proposed as a possible mechanism underlying various

periodic phenomena in the solar atmosphere, including

quasi-periodic pulsations (QPPs, e.g. McLaughlin et al.

2018; Zimovets et al. 2021).

Oscillatory reconnection phenomena have been inves-

tigated across various plasma configurations. Among

these studies, Prokopyszyn et al. (2019) delved into

the dynamics of a null point perturbed by a continu-

ous driver perpendicular to a 2D plane that contains an

X-point using 2.5D simulations, revealing phase-mixing

due to the magnetic field inhomogeneities. Santamaria

& Van Doorsselaere (2018) examined oscillatory recon-

nection within a 2D arcade configuration, considering

a stratified atmosphere, finding that the null point be-

haves as a resonant cavity generating waves at certain

frequencies that depend upon the equilibrium parame-

ters. Tarr et al. (2017) studied a null point in an arcade

configuration, modeling a stratified atmosphere from the

photosphere to the lower corona. In their simulation,

they added a wave packet driver in the photosphere.

They analyzed the energy conversion of this incident

wave packet at the null point. They reported that 70%

of the energy incident on a null point is converted to

slow magnetoacoustic waves, 7% into fast magnetoa-

coustic waves, and 23% remains at the null until dissi-

pated. Stewart et al. (2022) found that, during flux rope

coalescence, oscillatory reconnection can occur intrinsi-

cally without an external oscillatory driver, resulting in

both a periodic signal and the generation of radially-

propagating nonlinear waves. In these investigations

(Prokopyszyn et al. 2019; Santamaria & Van Doorsse-

laere 2018; Stewart et al. 2022; Tarr et al. 2017), the

plasma was either analyzed under fixed atmospheric con-

ditions or within a single magnetic field configuration.

Karampelas et al. (2022b) investigated the periodic-

ity and decay rate in the oscillatory reconnection pat-

tern observed at the current sheet at a null point. In

their study, the effect of temperature was evaluated from

0 K up to 1 MK for a 1.44 G magnetic field. Their

findings show that the oscillatory reconnection signal

is only affected by temperatures above 10,000 K. This

study’s parametric exploration of temperature and mag-

netic field variations was conducted within a limited pa-

rameter space. Karampelas et al. (2023) performed a

parametric study for evaluating the impact of solar at-

mospheric conditions and magnetic field on the oscilla-

tory reconnection period. They evaluated a temperature

range from 3 MK up to 10 MK for a magnetic field range

from 10 G to 30 G and proposed an empirical formula

to describe the oscillatory reconnection period.

Thus, oscillatory reconnection has been studied in a

variety of magnetic topologies, albeit all containing a

null point, and for a variety of coronal conditions, in-

cluding different initial temperature profiles and varying

equilibrium magnetic field strengths. All these studies

report an oscillating signal in the current density at the

null point; a tell-tale sign of oscillatory reconnection.

However, these studies also report a variety of periods,

amplitudes and behaviors for such a signal, and it is

currently unclear how to bring these different studies

together into a single unified understanding. This pa-

per aims to do just that: to perform a parametric study

involving variations in magnetic field strength from B =

5 G to 100 G and plasma temperature between 0 K to

10 MK, with the aim of exploring a wider parameter

space than previous explored, in order to consolidate

these different results under a single explanation.

This paper has the following structure: the numerical

model, initial conditions and boundary conditions are

detailed in §2; the results are presented in §3, includ-
ing the dependence on the equilibrium magnetic field

(§3.2), the influence of the initial background tempera-

ture (§3.3) and the unification of these results into an

energy map (§3.4). The conclusions are presented in §4.

2. NUMERICAL MODEL

2.1. Governing equations

In our investigation, we solve the 2D resistive MHD

equations through the utilization of the LARE2D code

(Arber et al. 2001). The equations are solved in La-

grangian form, employing a Lagrangian-Eulerian remap

procedure and can be expressed in dimensionless form

as follows:

Dρ

Dt
=−ρ∇ · v,

Dv

Dt
=

1

ρ
(∇×B)×B− 1

ρ
∇p,

DB

Dt
=(B · ∇)v −B(∇ · v)−∇× (η∇×B),

Dϵ

Dt
=−p

ρ
∇ · v +

η

ρ
|j|2,

p=ρϵ(γ − 1).
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Table 1. Initial conditions employed in the parametric
study, with values given at 1 Mm from the null point.

Case
B0 T0 p0 Vs0

Va0
β0

Ei0

EB0(G) (MK) (Pa)

A1 5 10 2.76E-1 1.52 6.24 4.16

A2/D1 10 10 2.76E-1 0.76 1.56 1.04

A3 20 10 2.76E-1 0.38 0.39 0.26

A4/C1 50 10 2.76E-1 0.15 0.062 0.042

A5/B1 100 10 2.76E-1 0.076 0.016 0.010

B2 100 1 2.76E-2 0.024 1.6E-3 1.0E-3

B3 100 0.1 2.76E-3 7.6E-3 1.6E-4 1.0E-4

B4 100 0.001 2.76E-5 7.6E-4 1.6E-6 1.0E-6

B5 100 0 0 0 0 0

C2 50 1 2.76E-2 0.048 6.2E-3 4.2E-3

C3 50 0.1 2.76E-3 0.015 6.2E-4 4.2E-4

C4 50 0.001 2.76E-5 1.5E-3 6.2E-6 4.2E-6

C5 50 0 0 0 0 0

D2 10 1 2.76E-2 0.24 0.16 0.10

D3 10 0.1 2.76E-3 0.076 0.016 0.010

D4 10 0.001 2.76E-5 7.6E-3 1.6E-4 1.0E-4

D5 10 0 0 0 0 0

Here, v denotes the velocity vector, B represents the

magnetic field, j is the current density, ρ signifies plasma

density, p corresponds to plasma thermal pressure, ϵ rep-

resents specific internal energy, η characterizes the resis-

tivity, and γ is the ratio of specific heats, set to 5/3 for

a hydrogen plasma. To accurately accommodate steep

gradients like shocks and address numerical instabilities,

LARE2D utilizes a numerical viscosity (Caramana et al.

1998; Arber et al. 2001).

The model assumes full ionization of the plasma and

non-dimensionalizes the governing equations with re-

spect to length-scale L0, magnetic field B0, and density

ρ0. These constants define non-dimensionalization for

velocity v0 = B0/
√
µ0ρ0 , thermal pressure p∗ = B2

0/µ0,

time t0 = L0/v0, current density j0 = B0/µ0L0, spe-

cific internal energy ϵ0 = v20 , temperature T ∗ = ϵ0m/kB
and resistivity η0 = µ0L0v0, where µ0 is the vacuum

magnetic permeability, kB is the Boltzmann constant

and m the average mass of ions. Simulation results can

be scaled with appropriate reference scales, with typi-

cal values for the solar corona being L0 = 1 Mm and

ρ0 = 1.67 × 10−12 kg/m3. We set the resistivity as

η = 10−4η0. Our investigation explores a variety of

B0 values and initial background temperatures, and the

physical values of these are presented in Table 1. There

is no physical viscosity in our system and the numerical

dissipation is negligible. It is important to notice that

Table 2. Non-dimensionalization scales showing the influ-
ence of magnetic field strength B0 on time t0, temperature
T ∗ and current densities j0.

Case B0 (G) t0 (s) T ∗ (MK) j0 (A/m2)

A5, B1-B5 100 0.145 5772.8 7.957E-3

A4, C1-C5 50 0.290 1443.2 3.978E-3

A3 20 0.724 230.9 1.591E-3

A2, D1-D5 10 1.449 57.7 0.795E-3

A1 5 2.897 14.4 0.397E-3

some normalization scales depend on B0, as shown in

Table 2.

We will conduct two types of parametric studies: sim-

ulation set A, where the temperature and thermal pres-

sure are initially constant while varying the magnetic

field intensity, and simulation sets B, C and D, where

we choose and fix an equilibrium magnetic field strength

B0, while exploring increasing the initial plasma temper-

ature from a cold state (T = 0) up to 10 MK, for cases at

B0 = 10 G, 50 G and 100 G. Details of each simulation

set is shown in Table 1.

In our analysis, we consider a fully-ionized, pure hy-

drogen plasma, wherein the average mass of ions can

be approximated to the proton mass, mp. However,

for conditions typical of the solar corona, where the

plasma composition includes various elements, one can

account for an average ion mass by setting m = 1.2mp.

Due to the non-dimensionalization in our system, it

is straightforward to consider either a pure hydrogen

plasma (m = mp, where these are the results presented

in this paper) or the temperature derived from our sim-

ulations can be divided by 1.2 to obtain the correspond-

ing temperature for an average ion mass of m = 1.2mp

(where this adjustment would then account for heavier

ions in the plasma composition).

2.2. Equilibrium magnetic field and initial condition in

velocity

For the equilibrium magnetic field, we consider a 2D

X-point defined by:

B =
B0

L0
(y, x, 0). (1)

We take the equilibrium density, ρ0, and initial back-

ground temperature, T0, to be uniform, and the mag-

netic Reynolds number was set as Rm = 104. The ini-

tial temperature profile and equilibrium magnetic field

strength are detailed in Table 1. Table 1 also shows in-

formation on the ratio between internal energy Ei = ρϵ,

and magnetic energy EB = |B|2/2µ0, per unit of vol-

ume. Vs =
√
γp/ρ is the speed of sound and Va =



4

|B|/√µ0ρ is the Alfvén speed. Note that the equilib-

rium magnetic field given in Equation (1) is highly in-

homogenous and is scale-free. Thus, our choice of B0

is only the initial value of magnetic field strength at

t = 0 and r = L0, where r =
√
x2 + y2, i.e., |B(r =

L0, t = 0)| = B0. Similarly, Va(r = L0, t = 0) = Va0,

Ei(r = L0, t = 0) = Ei0 and EB(r = L0, t = 0) = EB0

denote the initial Alfvén speed, internal energy per unit

of volume, and magnetic energy per unit of volume, re-

spectively, at r = L0 and t = 0. In the same way, T (t =

0) = T0, p(t = 0) = p0 and Vs(r = L0, t = 0) = Vs0 de-

note the initial background temperature, pressure and

sound speed, respectively, which we take to be constant

when t = 0 (and thus there is no need to specify r = L0).

All these parameter choices are detailed in Table 1.

The plasma β denotes the ratio of thermal pressure

(p) to magnetic pressure (pmagnetic = |B|2/2µ0) and is

given by β = 2µ0p/|B|2. Initially and at r = L0, we

define β0 as:

β0 = β|r=L0,t=0 =
2µ0p

|B|2

∣∣∣∣
r=L0,t=0

=
2µ0p0
B2

0

. (2)

The initial velocity field is computed as it was in

McLaughlin et al. (2009), where it is imposed based in

two variables v⊥ = v × B · ẑ and v∥ = v · B that is

related to propagation perpendicular and parallel to the

magnetic field lines. The initial velocity pulse is given

by:

v⊥(x, y)=2Csin[π(r − 4.5)] 4.5 ≤ r ≤ 5.5, (3)

v∥(x, y)=0, (4)

where 2C is our initial amplitude. The expression de-

scribe a circular, sinusoidal pulse shown in Figure 1a.

When the simulation begins, this initial pulse will nat-

urally split into two waves, each of amplitude C, trav-

eling in different directions: a radially-outgoing wave

and a radially-incoming wave. The incoming wave, i.e.

the wave traveling towards the null point, is the wave

we are primarily interested in since it is the wave that

is responsible for triggering the oscillatory reconnection.

The Cartesian velocity field, equivalent to Equations (3)

and (4), can be obtained via:

vx =
v∥Bx + v⊥By

|B|2
and vy =

v∥By − v⊥Bx

|B|2
.

2.3. Boundary conditions and domain setup

We adopt a Neumann boundary condition imposing

zero gradient at the boundaries for velocities, magnetic

field and thermodynamic variables. We also employ a

stretched grid characterized by finer resolution closer

to the null point, i.e. the region of primary interest,

Figure 1. Evolution of the plasma flow for case D2, where
B0 = 10 G and T0 = 1 MK. Panel (a) shows contour of v⊥
and separatrices, panels (b) to (d) present contours of ∆T =
T − T0 and black lines represent the (evolving) separatrices.

and coarser resolution in the outer regions. The grid is

equally spaced and highly refined around the null point

and initial pulse at -5 ≤ x, y ≤ 5, and it employs a

stretching at x, y > 5. We adopt a hyperbolic tangent

stretching function that smoothly changes the growth

rate of grid spacing from 0 to 7% for x, y > 5. The

mesh stretching in the outer regions also creates some

numerical dissipation, which is useful in terms of dissi-

pating away the outgoing waves and thus reducing the

impact of reflected waves which could then go on to fur-

ther perturb our null point, which is undesirable. We

also employed a damping region at r > 6, such that this

damping region removes kinetic energy from the outgo-

ing waves in the outer region, again so it does not reflect

back and perturb the null. The details of this kinetic-

energy damping condition are described in Talbot et al.

(2024). Our total grid has 1700 × 1700 points, and the

total domain box extends to -93 ≤ x, y ≤ 93.

3. RESULTS

3.1. Overall behavior and temperature evolution

The numerical set-up, choice of equilibrium magnetic

field and initial velocity perturbation closely follow the

work of previous authors (such as McLaughlin et al.

2009; Karampelas et al. 2022b, 2023) and readers are

referred to these works for a detailed explanation of the

system evolution. Instead, this section will focus on pre-

viously unexplored details, such as the analysis of the

evolution of temperature perturbation.

Figure 1 depicts the evolution for simulation D2 in

Table 1, where B0 = 10 G and T0 = 1 MK (There



5

Figure 2. Time evolution of the current density at
the null point for case D2, jz(0, 0, t)/j0, with the ×
symbol denotes the roots of the function.

is nothing special about the choice of case D2; it just

represents a typical simulation across all our cases). In
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Figure 3. Integrated temperature perturbation ⟨∆T ⟩ as
function of non-dimensionalized time for simulation sets A1
to A5 in Table 1. The circles indicate the maximum of each
time series.

the Figure 1a, the initial condition is shown by a cir-

cular pulse represented by v⊥ contours, which generates

two fast magnetoacoustic waves, one propagating inward

and the other outward. The inward wave perturbs the

null point and initiates oscillatory reconnection. Note

that, in order to focus attention towards the area of pri-

mary interest (the null) the numerical domain presented

here is a subset of the full domain.

Subsequent Figures 1b -1d illustrate temperature per-

turbation contours ∆T , with black lines representing the

magnetic field lines separatrices. We define ∆T as the

temperature difference between the evolving tempera-

ture field and the initial background temperature (which

is initially uniform):

∆T (x, y, t) = T (x, y, t)− T (x, y, 0) = T (x, y, t)− T0 .

(5)

In Figure 1b, at t = 2t0, the fast magnetoacoustic

wave approaches the null point and develops into a shock

wave. This initial shock wave elevates plasma tempera-

ture and gives rise to two jet streams along the x−axis,

emanating from the null point. The plasma attains a

highly-localized temperature of 12 MK at the jets.

In Figure 1c, ∆T is presented at t = 4t0, after the

shock wave reaches the null point. The X-point is highly

deformed from its equilibrium profile (due to the passage

of the fast oblique magnetic shocks) and the magnetic

field lines assume a new configuration featuring a hor-

izontal current sheet aligned with the x−axis, marking

the first cycle of oscillatory reconnection. Additionally,

the temperature peak of 12 MK decreases and spreads

near the jets, heating the plasma locally to 2.5 MK.

Figure 1d, at t = 6t0, presents the plasma after the

first horizontal current sheet has formed, force imbal-

ance has then peeled the horizontal current sheet apart,

overshoot the original magnetic configuration, and so a

new current sheet has formed (the first vertical current

sheet), parallel to the y−axis. This process characterizes

an oscillation cycle, where the reconnection and reorien-

tation will repeat at the points where the roots of the

oscillations of jz(0, 0, t) are displayed in Figure 2. In

Figure 1d, we observe local heating at the ends of the

vertical current sheet, albeit the localized heating is still

strongest close to x ≈ ±1, y = 0. In other words, the

strongest localized heating comes from that first hori-

zontal current sheet.

3.2. Sensitivity to choice of equilibrium magnetic field

strength

In this section, we shall analyze the influence of mag-

netic field strength on heating for a given initial back-

ground temperature. To achieve this, we utilize the inte-

grated temperature perturbation ⟨∆T ⟩, to measure the
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Figure 4. (a) maximum integrated temperature ⟨∆T ⟩max as function of equilibrium magnetic field strength B0. The brown
dot-dash line denotes a fitted quadratic dependence on the magnetic field strength following ⟨∆T ⟩max ∼ B2

0 , where the slope is
offset artificially for ease of comparison. (b) maximum integrated non-dimensional temperature ⟨∆T ⟩max as function of internal-
to-magnetic energy ratio. The purple line represents the maximum obtained for simulation set A seen in Fig. 3. The red line
represents the maximum from simulations B2, C2 and D2, the green line corresponds to simulations B3, C3 and D3, the orange
line cases B4, C4 and D4 and the blue B5, C5 and D5.

heating effect near the null point. The symbol ⟨ ⟩ de-

notes a spatial average over an area S, defined as:

⟨f⟩ = 1

S

∫∫
S

f(x, y, t)dS, (6)

where f is some arbitrary function, and S the integra-

tion surface we defined as −2 < x, y < 2 Mm. The

integration area was selected to enclose the magnetic

field lines, jet stream and the heated region, as depicted

in Figure 1. The integrated temperature perturbation

serves as a metric for assessing the heating effect in the

vicinity of the null point. The circles in Figure 3 repre-

sent the maximum heating observed in the time series.
Figure 3 illustrates the values of ⟨∆T ⟩ for simulation

sets A1-A5, as outlined in Table 1, wherein the plasma

is maintained at 10 MK and we vary the equilibrium

magnetic field strength, B0. As mentioned in Section

2.2, Equation (1) is scale-free and so our choice of B0 is

the value magnetic field strength at r = L0 (and then B

varies throughout the domain).

In Figure 3, initially a sharp increase in plasma tem-

perature is observed, coinciding with the passage of the

shock wave propagating towards the null point. This

initial heating phase concludes approximately before

t = 2t0. Subsequently, oscillatory reconnection pro-

cesses sustain the heating by converting magnetic energy

into internal energy.

In cases A1, A2 and A3, corresponding to B0 = 5 G,

B0 = 10 G and 20 G respectively, a spike in heating is

observed around t =1.5t0, attributed to the initial shock

wave. Following this, the plasma undergoes cooling be-

fore the onset of oscillatory reconnection, heating up

to 0.19 MK, 0.48 MK and 1.06 MK, respectively. These

cases are characterized by a high β0 regime, as indicated

by the initial internal-to-magnetic energy ratio of 4.16

for case A1, 1.04 for case A2, and 0.26 for case A3 (at

a distance of 1 Mm from the null point). Consequently,

the magnetic field strength in cases A1 and A2 is insuf-

ficient to heat the plasma to temperatures exceeding 1.0

MK and never above 1.1 MK for case A3.

Conversely, in cases A4 and A5, corresponding to

B0 = 50 G and 100 G respectively, the plasma is in

a low β0 regime, resulting in more pronounced heating.

Maximum temperatures reach up to 15 MK and 63 MK,

respectively, indicating a more significant heating effect

due to the stronger magnetic fields.

Figure 4 illustrates the maximum heating obtained

from all the different simulation sets in Table 1, namely

A1-to-A5, B1-to-B5, C1-to-C5 and D1-to-D5 (note that

B1=A5, C1=A4 and D1=A2) cases. Observing Fig-

ure 4a, it becomes apparent that the heating is directly

proportional to the choice of equilibrium magnetic field

strength at 1 Mm from the null point. The maximum

heating follows a power law and exhibits a quadratic

dependence on the magnetic field strength following a

⟨∆T ⟩max ∼ B2
0 line slope.

We performed a fitting on the curves shown in Figure

4a and we were able to obtain an expression to quantify

the heating and the average temperature as:

⟨∆T ⟩max = aBb
0, (7)
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where in this expression B0 is the initial magnetic field

in Gauss at 1 Mm from the null point and the initial

output temperatures are given in MK. The constants a

and b are presented in Table 3 together with respective

standard deviations, σa and σb. Under the assumption

that the covariance σab between the coefficients a and b

is negligible, we can derive the following expression to

describe the standard deviation for the fitted expression

using uncertainty propagation:

σ∆T ≈aBb
0

√(σa

a

)2

+B2b
0 (ln(B0)σb)4 .

Table 3 shows that there is no variation in the index

b, or amplitude a, for cases with temperatures lower

than 1 MK. For cases at 1 MK, there is a negligible

variation in the coefficients, and for the hotter case at 10

MK, we can observe a slight variation. The curve at 10

MK comprises the simulation set A1 to A5 (representing

the peaks observed in Figure 3), which has a significant

variation in β0, ranging from 0.016 to 6.24. The other

curves have low β0 values, as shown in Table 1, which

can explain the self-similar behavior.

In addition, in Figure 4b, we analyzed the

maximum integrated-temperature perturbation non-

dimensionalized by T ∗ as a function of the energy ratio

for multiple initial background temperatures. We ob-

serve self-similar behavior for background temperatures

up to 0.1 MK. The simulation cases of 1 MK and 10 MK

show a decrease in heating when Ei0/EB0 > 0.01.

3.3. Sensitivity to initial background temperature

profile

3.3.1. Integrated temperature perturbation ⟨∆T ⟩

Figure 5 displays the results of the integrated temper-

ature perturbation ⟨∆T ⟩ and integrated Ohmic heating

⟨ηj2⟩ non-dimensionalized by η0j
2
0 for simulation sets B,

C and D. Firstly, analyzing the integrated temperature

perturbation Figure 5a, significant heating is found in

simulation set B, which is attributable to the high equi-

librium magnetic field strength of 100 G. The curves ex-

hibit a self-similar pattern during the initial transient,

Table 3. Fitting coefficients and standard deviation for each
curve from Figure 4a, coefficients a and b are presented in
Equation (7).

T (MK) a b σa σb

10 4.77E-3 2.06 2.25E-4 1.03E-2

1 6.11E-3 2.01 1.21E-4 4.34E-3

0.1 6.36E-3 2.00 1.86E-10 6.41E-9

0.001 6.36E-3 2.00 1.86E-10 6.41E-9

0 6.36E-3 2.00 1.86E-10 6.41E-9

heating the plasma to a localized maximum of 65 MK

in simulation set B.

Of particular interest, the heating in the simulation

set at B0 =100 G does not seem to be influenced by the

initial temperature. This observation is significant since

the initial temperature from dataset B1 and B5 differs

by seven orders of magnitude (0 to 10 MK).

In the Figure 5c, simulation set C (50 G) exhibits max-

imum heating nearly four times smaller than the results

found in simulation set B (100 G). This difference high-

lights the significant importance of choice of equilibrium

magnetic field strength on plasma heating. Addition-

ally, a self-similar solution is observed in temperatures

between T0 = 0 to 1 MK, whereas the simulation at

T0 = 10 MK achieves maximum heating faster and with

a 1.5 MK reduction compared to simulations at lower

temperatures.

The Figure 5e shows results for simulation set D (10

G). Here, the initial background temperature signifi-

cantly impacts simulations, and the heating is only self-

similar for simulations with temperatures ranging from

0 to 0.1 MK. The simulation at 10 MK display a spike

in t ≈ t0 generated by the initial shock wave; similar

behavior can also be observed in B0 = 5 G in Figure 3.

Ohmic heating (Figures 5b, 5d and 5f) increases

quickly, reaching its peak by t = 2t0, then decreasing sig-

nificantly by t = 4t0. This increase corresponds with the

sharp rise observed in the integrated temperature distur-

bance (Figure 5 left column), indicating that magnetic

energy is being converted to internal energy. The ini-

tial background temperature does not affect the Ohmic

heating patterns observed at magnetic field strengths

of 100 G and 50 G. However, simulations at 10 G re-

veal a decrease in the magnitude of Ohmic heating for

temperatures of 1 and 10 MK, which aligns with the

temperature disturbance plots in Figures 5a, 5c and 5e.

The peak at t = 2t0 suggests that a substantial portion

of Ohmic heating comes from the initial jets shown in

Figure 1b.

3.3.2. Evolution of jz(0, 0, t)

The evolution of the current density at the null point,

jz(0, 0, t), is a key aspect of oscillatory reconnection. In

our simulations the null point is stationary and located

at the origin (x, y) = (0, 0). Figure 6 left column dis-

plays the jz(0, 0, t) evolution (normalized against j0) for

datasets B, C and D in Table 1 and the right column

displays the power spectral density (PSD) of jz(0, 0, t)

non-dimensionalized.

The observed oscillations in jz(0, 0, t) are character-

istic of signals associated with oscillatory reconnection,

indicating periodic changes in the configuration of mag-
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Figure 5. Left column: Integrated temperature perturbation ⟨∆T ⟩ as function of normalized time. Right column: Integrated
non-dimensionalized Ohmic heating as function of non-dimensionalized time. Panels represent simulations with B0 = 100 G
(top), 50 G (middle) and 10 G (bottom), respectively in Table 1.
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Figure 6. Left column displays variations of the current density at the null point, jz(0, 0, t)/j0, displays for different equilibrium
magnetic field strengths and initial background temperature configurations. Right column shows the power spectral density
(PSD) of jz(0, 0, t)/j0 of the same simulations.
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Table 4. Periods and amplitudes extracted from jz(0, 0, t)/j0 power spectral density (PSD) for the dominant period (P ). ∆P
and ∆A represent the period decrease and amplitude decrease from a cold case to a hot case for the same magnetic field strength.

Case B0 (G) T0 (MK) Period (P) Amplitude (A) ∆P (%) ∆A (%) Ei0/EB0 (%)

B1/A5 100 10 9.001 17.39 0.00% 2.69% 1.04%

B2 100 1 9.001 17.83 0.00% 0.26% 0.10%

B3 100 0.1 9.001 17.87 0.00% 0.03% 0.01%

B4 100 0.001 9.001 17.87 0.00% 0.00% 0.0001%

B5 100 0 9.001 17.87 0.00% 0.00% 0.00%

C1/A4 50 10 9.001 17.69 0.00% 1.05% 4.16%

C2 50 1 9.001 17.69 0.00% 1.05% 0.42%

C3 50 0.1 9.001 17.85 0.00% 0.10% 0.04%

C4 50 0.001 9.001 17.87 0.00% 0.00% 0.0004%

C5 50 0 9.001 17.87 0.00% 0.00% 0.00%

D1/A2 10 10 7.501 2.39 16.67% 86.63% 104.05%

D2 10 1 9.001 13.36 0.00% 25.25% 10.40%

D3 10 0.1 9.001 17.39 0.00% 2.69% 1.04%

D4 10 0.001 9.001 17.87 0.00% 0.03% 0.01%

D5 10 0 9.001 17.87 0.00% 0.00% 0.00%

netic field lines over time (McLaughlin et al. 2009). In

the Figures 6a and 6c, we see that variations in initial

background temperature profile do not significantly af-

fect the amplitude and period of the jz(0, 0, t) signal

for equilibrium magnetic field strengths of B0 = 100 G

(cases B) and 50 G (cases C), and these cases exhibit a

self-similar solution in non-dimensional units. However,

for simulations with equilibrium magnetic field strength

B0 = 10 G (cases D), we observe variations in ampli-

tude and period for temperatures of 1 MK (case D2)

and 10 MK (case D1), while temperatures below 0.1

MK demonstrate a self-similar solution (and are thus

comparable to B0 = 100 G and 50 G).

In Figures 6a, 6c and 6e, we can also observe that

jz(0, 0, t)/j0 oscillates around a non-zero value. This is

due to asymmetric heating in the plasma around the

neutral point, which itself is due to the sequence of re-

connection jets: at the end of the simulation, the plasma

to the left and right of the neutral point is fractionally

hotter than the plasma above and below it, as a result

of the iteration of hot reconnection jets that formed and

heated the plasma (each subsequent current sheet and

corresponding heating event is shorter/weaker than the

last. Consequently, the plasma pressure is very slightly

higher on the left and right of the null point at the

very end of the simulation, making it easier for the sys-

tem to form a very slight vertical current sheet). This

leads to jz(0, 0, t) tending towards a small positive value.

This phenomenon was originally reported in McLaugh-

lin et al. (2009).

The power spectral densities (PSD) exhibit uniform

behavior for all cases at magnetic field strengths of 100

G (cases B) and 50 G (cases C). We observe a constant

oscillation period for the dominant period of 9.001t0 for

all cases except for case D1 (B0 = 10 G and T0 = 1 MK).

Case D1 exhibits a dominant period of 7.508t0, repre-

senting a 16.7% decrease from the other cases. We also

calculated the amplitude difference for the dominant pe-

riod between a cold case and a hot case with the same

magnetic field strength. We only observed a difference

larger than 5% when Ei0/EB0 > 10%, which represents

cases D1 and D2. These results are presented in Table

4.

3.4. Energy map

An explanation for the apparent independence on ini-

tial background temperature for some cases may be

found in Table 1, where we observe that simulation set

B operates in a low β0 regime. The internal-to-magnetic

energy ratio in simulation set B is below 0.01, indicating

that magnetic energy is approximately 100 times larger

than internal energy. This dominance of magnetic en-

ergy leads to self-similar solutions between a cold plasma

and a plasma at 10 MK.

Let us now further explore the dependence of the

internal-to-magnetic ‘energy ratio’ on the equilibrium

magnetic field strength and the initial background tem-

perature profile. The internal energy per unit volume,

Ei, for an ideal fully-ionized hydrogen plasma is given

by:

Ei = ρϵ =
2ρkbT

mp(γ − 1)
=

p

γ − 1
, (8)
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Figure 7. Contour of the ratio of internal energy non-dimensionalized by magnetic energy for the initial condition (1 Mm away
from the null point). Color bar shows the energy ratio as function of plasma β0 and 100Ei0/EB0.

and the magnetic energy per unit volume, EB , is given

by:

EB =
|B|2

2µ0
, (9)

and thus the ratio between energies can be written as:

Ei

EB
=

4µ0ρkbT

mp(γ − 1)|B|2
=

1

γ − 1

p

pmagnetic
=

β

γ − 1
, (10)

where pmagnetic is the magnetic pressure.

Alternatively, it can be formulated for the initial con-

dition at r = L0 = 1 Mm of the null point:

Ei0

EB0
=

4µ0ρ0kbT0

mp(γ − 1)B2
0

=
2µ0

γ − 1

p0
B2

0

=
β0

γ − 1
. (11)

Notice that Ei0/EB0 is inversely proportional to the

equilibrium magnetic field strength (at r = 1 Mm),

whereas it is directly proportional to density and tem-

perature. These three variables can provide insights into

whether the system is more dependent on magnetic en-

ergy or not. Notice also that in Equation (11) Ei0/EB0

is directly proportional to β0.

Figure 7 denotes the internal-to-magnetic energy ratio

(Equation 11, presented as a percentage) as a function

of equilibrium magnetic field strength and initial back-

ground pressure at a distance of 1 Mm from the null

point. Alternatively, since the internal-to-magnetic en-

ergy ratio is directly proportional to β0, Figure 7 also

denotes contours of β0. Thus, we refer to Figure 7 as an

energy map of the parameter space.

The energy map is divided into several regions delin-

eated by isolines of Ei0/EB0 in percentage at 1%, 5%,

10%, 50%, and 100%. The contour lines provide insights

into the relative dominance of internal energy compared

to magnetic energy. Regions below the 10% line suggest

a dominance of magnetic energy, indicating that the sys-

tem’s behavior may resemble that of cold plasma, with

self-similar solutions for plasma heating profiles. Solu-
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tions above the 50% line indicate a significant contribu-

tion from internal energy, leading to a decrease in the

maximum heating. Beyond the 100% threshold, hydro-

dynamic effects become dominant, resulting in further

reduction in heating.

In the solar corona, we can estimate the equilibrium

pressure of a plasma at 1 MK and a density of ρ0 =

1.67 × 10−12 kg/m³ to be around 0.0276 Pa and 0.276

Pa during a 10 MK flare. Regions with pressure below

this threshold are typical of the solar corona.

The solution in the lower-right-corner of the map in-

dicate regions of low β0 and are thus magnetically-

dominated. The upper-left-corner indicates regions of

high β0 and so simulations here are more hydrodynami-

cally dominated. Note that increases in thermal pressure

on the y−axis can be obtained via increasing the ini-

tial background temperature profile and/or simulations

that have higher initial background densities, according

to Equation (8).

The energy map allows us to contextualize previous

studies by placing them at specific points within the 2D

parameter space:

• Karampelas et al. (2022b) investigated the in-

fluence of temperature and heat conduction on

plasma conditions. Their simulations focused on

a single magnetic field with varying background

temperatures. They observed self-similar behav-

ior in plasma temperature profiles at low temper-

atures, which is consistent with our findings.

• Karampelas et al. (2023) conducted a parametric

study covering a subset of both axes of the energy

map. Their research focused on modeling jz os-

cillations at null points and developing empirical

formulas based on their simulations. Their work

primarily lies in a region above the 10% line, which

means that based on the energy map we can in-

fer that temperature profiles may not exhibit self-

similar behavior in their studied conditions.

• The simulation from Prokopyszyn et al. (2019) is

expected to display the exact solution of a cold

plasma since it is placed below the Ei0/EB0 = 10%

line; the same is expected from the Stewart et al.

(2022) simulation. On the other hand, it is ex-

pected that Prokopyszyn et al. (2019) and Stewart

et al. (2022) display a distinct behavior in terms

of heating, since ⟨∆T ⟩max ∼ B2
0 as discussed in

Section 3.2.

• The simulation case from Santamaria &

Van Doorsselaere (2018) is placed above the 10%,

where the magnetic field strength is weak, mean-

ing that magnetic and internal energies are com-

parable in magnitude. Their heating profile, jz
oscillation period and amplitude are expected to

be more sensitive to initial temperature and pres-

sure variations. In their study, they considered an

arcade configuration in a stratified atmosphere.

The reference values were extracted from their

plots and interpolated at the height of the null

point at a 1 Mm distance for placement on the

energy map.

• Tarr et al. (2017) considered a stratified atmo-

spheric condition and modeled the effect of heavier

ions where m = 1.25mp. Their energy ratio at the

height of the null point is Ei0/EB0 =83%, which

means that they are in a regime where plasma

heating is smaller than in a cold plasma, and also

it is expected to present a smaller maximum am-

plitude for jz signal at the null point.

• Previous studies considering a cold plasma, T =

0 K, such as McLaughlin et al. (2009) and Tal-

bot et al. (2024) do not appear as dots on the

energy map since the initial condition consid-

ers a zero pressure. Instead, they would ap-

pear towards the bottom of the y−axis, clearly

within the low β/magnetically-dominated regime.

Thurgood et al. (2017) did not provide the non-

dimensionalization scales to place it into the en-

ergy map precisely. However, their energy ra-

tio in their simulations was 1.25%, which would

place them between the 1% and 5% lines, which

means that their simulation is in a magnetically-

dominated regime.

Details about the initial configuration of these previ-

ous studies in the literature can be found in Section 1.

As discussed, the energy map can be used to estimate

the heating and jz sensitivity of a 2D X-point to different

magnetic field strengths and atmospheric conditions.

4. CONCLUSIONS

We conducted 2D MHD simulations of a magnetic

field with an X-point configuration perturbed by an ini-

tial condition in velocity for a fully-ionized, resistive

plasma. Through a parametric study involving adjust-

ments in equilibrium magnetic field strength and initial

background plasma temperature, we investigated their

influence on plasma heating around the null point and

the oscillatory reconnection signal jz(0, 0, t).

Firstly, we performed a parameter study for different

values of equilibrium magnetic field strength, B0. Our
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equilibrium magnetic field (Equation (1)) is scale-free

and so our choice of B0 is the value of the magnetic

field strength at r = L0 (and then B varies through-

out the domain). We found that the choice of B0 has

a significant effect on the evolution, with the maximum

temperature generated by the initial reconnection jets

exhibiting a quadratic dependence ⟨∆T ⟩max ∼ B2
0 . For

example, our simulation for B0 = 50 G and T = 10

MK (case C1) generated reconnection jets with maxi-

mum temperatures of around 15 MK. We also obtained

an expression to quantify the heating and the average

temperature as ⟨T ⟩max = aBb
0 + T (t = 0), with Table 3

detailing the amplitude a and index b for all our simu-

lations.

This behavior aligns with expectations, as the mag-

netic energy increases quadratically with the magnetic

field strength, resulting in a larger reservoir of magnetic

energy available for conversion into internal energy, cre-

ating a self-similar behavior of Figure 4b.

We also analyzed the maximum integrated-

temperature perturbation (non-dimensionalized by T ∗)

as a function of the internal-to-magnetic energy ratio

for multiple initial background temperatures. We found

self-similar behavior for all cases where Ei0/EB0 < 0.01,

including self-similar behavior for all background tem-

peratures up to 0.1 MK, and a decrease in heating for

simulation cases of 10 MK (case D1) and 1 MK (case

D2).

Secondly, we performed a parameter study for differ-

ent values of initial background temperature T0. We

found that the integrated temperature perturbation

⟨T (x, y, t) − T0⟩ displayed different behavior depending

upon the value of B0. For B0 = 100 G (cases B) and

B0 = 50 G (cases C), the integrated temperature per-

turbation did not seem to be influenced by the initial

background temperature; all the curves exhibit a self-

similar pattern, over seven orders of magnitude (0 to 10

MK) for cases B and six orders of magnitude (0 to 1

MK) for cases C: there was only a slight departure from

self-similarity for case C1 (T0 = 10 MK).

For B0 = 10 G simulations (cases D), we found that

the evolution of the integrated temperature perturba-

tion is only self-similar for simulations with temper-

atures ranging from 0 to 0.1 MK (cases D3 to D5),

whereas for 10 MK (case D1) and 1 MK (case D2) the

initial background temperature does significantly im-

pact the evolution (a departure from self-similarity).

Although the heating effect is more pronounced in

simulations at lower temperature, where β0 is smaller,

the actual temperature is larger in simulations when the

initial background plasma is hotter. This is expected

since final temperature is still dependent on the initial

temperature in the system, as seen in Equation (5).

We also investigated the amount of Ohmic heating

in the system, finding that the initial background tem-

perature does not affect the integrated Ohmic heating

patterns observed at magnetic field strengths of 100 G

(Cases B) and 50 G (Cases C). However, simulations

at 10 G reveal a decrease in the magnitude of Ohmic

heating for temperatures of 10 MK (case D1) and 1 MK

(case D2), in agreement with the temperature distur-

bance plots.

Thirdly, we also investigated the evolution of the cur-

rent density at the null point, jz(0, 0, t) for different val-

ues of initial background temperature T (t = 0). We

found that variations in initial background temperature

profile do not significantly affect the amplitude and pe-

riod of the jz(0, 0, t) signal for equilibrium magnetic field

strengths of B0 = 100 G (cases B) nor 50 G (cases C),

and that all these cases exhibit a self-similar solution in

non-dimensional units. However, for simulations with

B0 = 10 G (cases D) we observe variations in ampli-

tude and period for temperatures of 10 MK (case D1)

and 1 MK (case D2), while temperatures below 0.1 MK

demonstrate a self-similar solution (and are thus com-

parable to jz(0, 0, t) for B0 = 100 G and 50 G), i.e.

a similar result as that for the integrated temperature

perturbation sensitivity.

The power spectral densities (PSD) exhibit uniform

behavior for all cases at magnetic field strengths of 100

G (cases B) and 50 G (cases C) and for 10G Cases D2-

D5, where we observed a constant oscillation period for

the dominant period of 9.001t0 for all cases except for

case D1 (B0 = 10 G and T0 = 1 MK). Case D1 exhibits

a dominant period of 7.508t0, representing a 16.7% de-

crease from the other cases.

Additionally, we calculated the amplitude difference

for the dominant period between a cold case and a hot

case with the same magnetic field strength. We only

observed a difference larger than 5% when Ei0/EB0 >

10%, which represents cases D1 and D2.

Fourthly, the results for the parameter studies across

B0 and T (t = 0) let us visualize the 2D parameter space

as an energy map (Figure 7). This energy map presents

the ratio of internal-to-magnetic energy Ei0/EB0 or,

equivalently, plasma β0, since Ei0/EB0 = β0/(γ − 1).

The energy map is divided into several regions delin-

eated by isolines of Ei0/EB0, where contour lines pro-

vide insights into the relative dominance of internal en-

ergy compared to magnetic energy or, equivalently, in

terms of β0:

• Regions below the 10% line suggest a dominance

of magnetic energy, with self-similar solutions for
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plasma heating profiles and for jz(0, 0, t). Equiv-

alently, the lower-right-corner of the map indi-

cates regions of low β0 and are thus magnetically-

dominated; this is where cold plasma simulations

exist.

• Solutions above the 50% line indicate a consider-

able contribution from internal energy, leading to

a decrease in the maximum heating.

• Beyond the 100% threshold, hydrodynamic effects

become dominant, resulting in further reduction

in heating. Equivalently, the upper-left-corner in-

dicates regions of high β0 and so simulations here

are more hydrodynamically dominated. There is

a significant departure from the self-similar solu-

tions of the magnetically dominated regimes.

The energy map also allows us to contextualize pre-

vious studies by placing them at specific points within

the 2D parameter space (see Figure 7). All these pre-

vious studies reported an oscillating signal in jz(0, 0, t)

but also reported a variety of periods, amplitudes and

behaviors for such a signal, and the energy map now

brings these different studies together into a single uni-

fied understanding (i.e. there exists a 2D parameter

space, dependent upon choices of B0 and T (t = 0), that

can affect resultant behavior and departure from self-

similar solutions in extreme high β0 situations). Thus,

this energy map serves as a valuable tool for interpreting

plasma behavior within a broader parameter space.

It is important to mention that these findings rely on

the hypothesis that the plasma is fully ionized, and ther-

mal conduction and radiation effects were not considered

in this study (Karampelas et al. 2022b investigated the

effect of thermal conduction of the oscillatory reconnec-

tion system, finding that its inclusion has a small effect

on the resultant period).
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